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primitives d’une fonction
               2bac pc

i) gÉnÉralitÉs

1- Définition

Soit f une fonction définie sur un intervalle I.

On appelle primitive de f sur  I toute fonction F définie et dérivable sur I telle que F ’ = f sur I.

Exemple

Soient f et F les fonctions définies respectivement par f (x)=x2+
1

x2
+
1
2√x

et F(x )=
x3

3
−
1
x
+√ x+4

F est dérivable sur ] 0 ; + [, et F '( x)=x2+
1

x2
+
1
2√ x

=f (x )

Donc F est une primitive de f sur ] 0 ; + [

2 -Théorème 
Toute fonction continue sur un intervalle I y admet une primitive. 

3 -Ensemble des primitives d’une fonctions

Soit F une primitive de f sur I. et G la fonction définie par G(x) = F(x) + k où k est une constante réelle. 

La fonction G est dérivable et G’(x)= F’(x)+0 = f(x). 

Donc G est aussi une primitive de f sur I .

Réciproquement, soit G et F deux primitives de f sur I.

Posons h (x) = G(x) – F(x) pour tout x appartenant à I

F et G sont dérivables sur I, donc h est dérivable sur I. 

h’(x)= G’(x) - F’(x) . pour tout x appartenant à I

Comme F et G sont des primitives de f, G’(x)= f(x) et F ‘(x)= f(x). 

Alors h’(x)= 0 pour tout x appartenant à I. h est donc une fonction constante : il existe un réel k tele que 
pour tout x de I, h(x)= G(x) - F(x)= k  

D’où G(x) = F(x) +k pour tout x appartenant à I.
a) Théorème
Soit F une primitive d’une fonction f sur I.

Alors G est une primitive de f sur I si et seulement s’il existe un réel k tel que  G(x) = F(x)+ k

b) Conséquence

Si une fonction admet une primitive sur I, alors elle en admet une infinité.

1/3

c) Primitive prenant une valeur donnée en un point x0

Soit  f  une fonction admettant  des primitives sur un intervalle I,  soient  G une primitive de f,  x0 un
élément de I, et y0 un nombre réel.

Si F est une primitive de f, alors il existe un réel K tel que F(x)= G(x)+ k.

F(x0) = y0 si et seulement si G(x0) + k = y0, et k = y0 - G(x0) .

Et F(x)= G(x) + y0 - G(x0) 

Ainsi : 

Si une fonction f admet une primitive sur I, alors pour tous réel x0 de I et y0 de R, il existe une primitive
F et une seule de f vérifiant F(0) = y0
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Exemple 

Soit f(x) = 3x² +2x + 4

La fonction F définie par F(x)= x3 +x2 + 4x -3 est une primitive de f

Les primitives de f sont les fonction G définies par G(x)= x3 +x2 + 4x - 3 +k où est une constante réelle. 

Déterminons la primitive G de f vérifiant G(1) = -1      

G(1) = 3 + k.

La condition G(1) = -1 ,donne k = - 4, ainsi G(x) =  x3 +x2 + 4x -7.

II) Primitives des fonctions usuelles
La lecture à l’envers du tableau des dérivées des fonctions usuelles nous donne 
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f 
xHk 
(kEIR.) 

XHX 

XHX 2

1 
x

XH-
2 

1 
XH-

✓x 
xHx11

(nEZ\{-1}) 
xH sinx 
XH COSX 

1xH- - 
2

2-=l+tan  x 
COS X 

F 

XHkx 

1 2 XH-X
 

 
2

1 3 

XH-X 

1 
XH--

X 

xH2✓x 

XH
1 

--X n+l

n+l 
XH-COSX 
xH sinx 

xH tanx 

Intervalle I (maximal) 

IR. 

IR. 

IR. 

IR_-* ou IR.+* 

IR_+* 

IR. (si n � 0) 
IR.-* ou IR.+* (si n < 0) 

IR. 
IR. 

]-
2 
1r + k1r· 

'2 
1r + k1r[

(k E z) 

3

__ __

III) Opérations sur les primitives
Propriétés

- Si F est une primitive de f sur I, et G une primitive de g sur I, alors F+G est une primitive de f+g sur I

- Si F est une primitive de f sur I et k une constante réelle, alors k.F est une primitive de k.f sur I

Formulaire 

Pour toute fonction u définie et dérivable sur un intervalle I ( et, pour la deuxième 
situation, prenant des valeurs strictement positives sur 1), on a 

f F 

xHu'(x)u"(x) 1 
( X ) r

+l 

XH-- ( U 
n+l 

( n différent de -1 ) 

u'(x) 
x H 2✓u(x) XH 

✓u(x) 
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Les résultats suivants découlent des formules de dérivation : 

Si u et v sont des fonctions dérivables, de dérivées u’ et v ’, 

un .u '  n >0 un+1

n+1
+ k

u '

u2
-
1
u

+ k

u '

√u
2 √u + k

 u’ v+v ’u  uv+k

u ' v−v ' u

v2
u
v

+k

 u’ cos u Sin u +k

 u’ sin u -cos u +k

 u’. v’ou vou + k

En particulier, 

- si f (x)=(ax+b)
n , alors F(x)=

1
a

(ax+b)
n+1

n+1
+ k

- si f(x)= cos (ax+b)  alors + k F(x)=
1
a

sin(ax+b)

- si f(x) = sin ( ax+b) alors F(x)=−
1
a

cos(ax+b) + k

Exemples 

- f (x)=2 x2+ 1x2
−

3

√x Alors F(x)=2. x3

3
−

1
x
−3√x+k

- f (x)=
3

(2 x−1)
2

Alors F(x)=−3. 1
2 x−1

+ k

3/3

- f (x)=
x+1

(x2
+2x−3)

2

Si on pose u(x) = x² +2x-3, on a u’(x) = 2x+2 = 2(x+1)

1
2

2(x+1)

(x2
+2 x−3)

2
=

1
2

u'(x)

(u(x))
2Alors f (x)=

Et F(x)=
−1
2

1
u(x)

+k=
−1
2

1

x2
+2 x−3

+k

1
x

4

1
x

- f (x)=(x+ ) (1−
x

1
2
)

On pose u(x)=x+ , on a u'(x)=1−
x

1
2 , et f (x)=u4 u' F(x)=

u4+1

4+1
+k=

1
5 x

(x+
1
)
5

+k
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