FILALI JAOUAD PRIMITIVES D'UNE FONCTION
2BAC PC

1) GENERALITES
1- Définition

Soit f une fonction définie sur un intervalle I.
On appelle primitive de f sur | toute fonction F définie et dérivable sur | telle que F ' =f sur .

Exemple
3
Soient f et F les fonctions définies respectivement par f (x)=x"+ 1 +_ et F(X):x B 1+\/;+4
Xt 24x 3 x
F est dérivable sur] 0 ; +oo [, et F(x) X+ — 1 A+ — f( )
x* 2\/x

Donc F est une primitive de fsur] 0 ; +oo [

2 -Théoréme
Toute fonction continue sur un intervalle | y admet une primitive.

3 -Ensemble des primitives d’'une fonctions

Soit F une primitive de f sur I. et G la fonction définie par G(x) = F(x) + k ou k est une constante réelle.
La fonction G est dérivable et G’(x)= F’(x)+0 = f(x).

Donc G est aussi une primitive de f sur | .

Réciproquement, soit G et F deux primitives de f sur I.

Posons h (x) = G(x) — F(x) pour tout x appartenant a |

F et G sont dérivables sur |, donc h est dérivable sur I.

h’(x)= G’(x) - F'(x) . pour tout x appartenant a |

Comme F et G sont des primitives de f, G’(x)= f(x) et F ‘(x)= f(x).

Alors h’(x)= 0 pour tout x appartenant a'l..h est donc une fonction constante : il existe un réel k tele que
pour tout x ded, h(x)= G(x) - F(x)= k

D’ou G(x) = F(x) +k pour tout x appartenant a I.

a) Théoreme

Soit F une primitive d’une fonction f sur I.

Alors G est une primitive de f sur | si et seulement s'il existe un réel k tel que G(x) = F(x)+
b) Conséquence

Si une fonction admet une primitive sur |, alors elle en admet une infinité.
c) Primitive prenant une valeur donnée en un point X,

Soit f une fonction admettant des primitives sur un intervalle |, soient G une primitive de f, X, un
élément de |, et yo un nombre réel.

Si F est une primitive de f, alors il existe un réel K tel que F(x)= G(x)+ k

F(xo) = yosi et seulement si G(xo) + k = yo, et k = yo - G(xo) .

Et F(x)= G(x) + yo - G(Xo)

Ainsi :

Si une fonction f admet une primitive sur |, alors pour tous réel xode | et y, de R, il existe une primitive
F et une seule de f vérifiant F(o) = yo
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Exemple
Soit f(x) = 3x2 +2x + 4

La fonction F définie par F(x)= x® +x?+ 4x -3 est une primitive de f

Les primitives de f sont les fonction G définies par G(x)= x* +x?+ 4x - 3 +k oU est une constante réelle.

Déterminons la primitive G de f vérifiant G(1) = -1

G(1)=3 +k.

La condition G(1) = -1 ,donne k = - 4, ainsi G(x) = x*> +x?+ 4x -7.

Il) Primitives des fonctions usuelles

La lecture a I'’envers du tableau des dérivées des fonctions usuelles nous donne

f F Intervalle I (maximal)
x>k
(keR) e R
1
XX xl—)zx2 R
2 1 3
X x x!—>§x R
1 1 _* *
X — X —— R ouR'
X x
1
)H—)ﬁ _x'_)z\/; R+*
x> x" s e R (sim>0)
(neZ\{-1}) n+l R ouR"™ (si n<0)
X sinx X+ —Ccosx R
X > CcosXx X sinx R
Vs Vs
x> ,—=Il+tan’x X tan x }Tk”’erk]{
cos” x (keZ)

IIl) Opérations sut les primitives

Propriétés

- Si F est une primitive de f sur |, et G une primitive de g sur |, alors F+G est une primitive de f+g sur |

- Si Flest une primitive de f'sur | et k une constante réelle, alors k.F est une primitive de k.f sur |

Formulaire

Pour toute fonction u définie et dérivable sur un intervalle | (et, pour la deuxiéme
situation, prenant des valeurs strictement positives sur 1), on a

X 2\/14 (x)
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Les résultats suivants découlent des formules de dérivation :

Si u et v sont des fonctions dérivables, de dérivées u’ et v’,

n ' > n+1
u.u n>0 u + K
n+l
r
u i l + K
u u
u' 2 Ju +k
Vu
u v+v'u uv+k
T _ r
u'v—v'u u "
v \4
u’ cos u Sin u +k
u sinu -cosu +k
u’. vou vou + k

En particulier,

n+1
(ax+b) .\

. _ n _1
-si f(x)=(ax+b)" ,alors F(X)—a —

- si f(x)= cos (ax+b) alors + k F(x):%sin(ax+b)

- si f(x) = sin ( ax+b) alors F(X):—%COS(aX+b) +K

Exemples
3 3
- f(x):2X2+)!2_\/x Alors F(x)zZ.é—%—3\/;+k
3
- f(x)=——
() (2x—1)
Alors F(X):_3'2x1—1 +k
D X+1
(x*+2x—3)
Si on'pose u(x) = x2 +2x-3, on a u’(x) = 2x+2 = 2(x+1)
1 72(x+1)  _1 u'(x)
Alors f(x)=—= =—
% 2 (x*+2x—3) 2(u(x)y
-1 1 —1 1
Et F(x)=—=—F—=+k=—F—————+k
(x) 2 u(x) 2 x*+2x-3
1%, 1
- f(X)=(x+=) (1——=
(0=(x+2) (1-)
On pose u(x):x+l ona u'(x):1—l et f(x)=u'u’ F(x):u4+1+k:1
x x> 4+1
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