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vous connaissez depuis longtemps : 0 ; 1 ; 2 ; 3...

Quel est le nombre entier naturel qui ajouté à 7 donne 12 ?

Quel est le nombre entier naturel qui ajouté à 12 donne 7 ?

L’exemple précédent montre que l’ensemble N est « insuffisant » car certaines équations simples n’y trouvent pas de

solution. On peut alors utiliser l’ensemble des entiers relatifs, noté Z, et qui contient N et les opposés des entiers naturels
(par exemple : −3 ; −2).

Résoudre dans N puis dans Z l’équation : 2x + 8 = 0.

Même question avec l’équation : 2x + 7 = 0.

De nouveau l’ensemble Z est en quelque sorte insuffisant pour exprimer les solutions de certaines équations.

De quel autre ensemble de nombres a-t-on au minimum besoin pour que l’équation du 2x + 7 = 0 ait une solution ?

Dans ce nouvel ensemble quelles sont les solutions de l’équation : 9x2 = 16 ?
Décrire l’ensemble de nombres dont on a besoin au minimum pour que l’équation précé-dente ait une solution. On

notera Q cet ensemble.

Modifier l’équation précédente pour qu’elle n’admette pas de solution dans l’ensemble des rationnels. Dans quel

ensemble faut-il travailler pour pouvoir dire qu’elle a deux solutions ?

Que pouvez-vous dire de l’équation x2 + 1 = 0 en terme de solutions dans les ensembles de nombres précédents ?

Compléter le schéma commencé ci-dessous, qui montre les inclusions successives des ensembles de nombres en donnant

Nombres complexes
Histoire1 

 L’ensemble de nombres le plus simple est celui de nombres entiers naturels, noté N et qui contient les nombres que

à chaque fois une équation qui n’a pas de solution dans l’ensemble, mais en a une dans le suivant.

I. Forme algébrique et représentation d’un nombre complexe

1. Définition et vocabulaire
THÉORÈME

Il existe un ensemble noté C appelé ensemble des nombres complexes qui possède les propriétés suivantes :

C contient l’ensemble des nombres réels ;

il contient un nombre i tel que i2 = −1 ;

il est muni d’une addition et d’une multiplication qui ont les mêmes propriétés que dans

R, l’ensemble des nombres réels.
Exemples

• Les nombres −1 ; 0 ; 3/4 ;
√

2 sont des nombres réels donc ce sont aussi des éléments de C.

• À l’aide du nombre i et de la multiplication : −i ; 2i ; i
√

2... sont aussi√dans C.

• Avec les additions, les nombres suivants sont aussi dans C : −1 + i ; 2+2i

DÉFINITION
Tout nombre complexe peut s’écrire sous la forme : z = a + ib avec a, b ∈ R.

Cette écriture est appelée forme algébrique de z :

a est appelée partie réelle de z, notée Re(z).

b est appelée partie imaginaire de z, notée Im(z).

REMARQUES :

Lorsque Im(z) = 0, z = a est réel.

Lorsque Re(z) = 0, z = ib est appelé imaginaire pur.

Exercice d’application Soient z1 = 1 + 2i, z2 = −1 + i, des nombres complexes. Déterminer les

parties réelles et imaginaires des complexes : z3 = z1 × z2, z4 = z2
1.

Correction z3 = (1 + 2i)(−1 + i) = −1 + i − 2i + 2i2 = −1 − i − 2 = −3 − i.

Donc Re(z3) = −3 et Im(z3) = −1.

z4 = (1 + 2i)2 = 1 + 4i + (2i)2 = 1 + 4i − 4 = −3 + 4i. Donc Re(z4) = −3 et Im(z4) = 4.
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THÉORÈME
Soient z1 = a1 + ib1 et z2 = a2 + ib2 deux nombres complexes :

z1 = z2 ⇐⇒
{

a1 = a2

b1 = b2

L’ écriture algébrique d’un nombre complexe est unique.

Exemple Soit z = 2x − 1 + i(3 − y), x ∈ R et y ∈ R, un complexe.

On a z = 0 si et seulement si 2x − 1 = 0 et 3 − y = 0 c’est-à-dire x =
1
2

et y = 3.

2. Représentation graphique des complexes
Le plan est muni d’un repère orthonormé direct :

(
O ; O

−→
U , O

−→
V
)
=
(
O ;−u→,−v→

)
.

DÉFINITION
Tout nombre complexe z = a + ib avec a, b ∈ R peut

être représenté dans ce repère par :

un unique point : M (a ; b), appelé image

ponctuelle de z = a + ib.

un unique vecteur : O
−−→

M (a ; b) appelé image

vectorielle de z = a + ib.

M(a + ib)

a

b

axe des réels

axe des imaginaires

O U

V

On dit que z = a + ib est l’affixe du point M et du vecteur O
−−→

M.

On note souvent M(z) ou M(a + ib) et O
−−→

M(z) ou O
−−→

M(a + ib).

Les complexes z = a ∈ R sont les nombres réels et sont représentés sur l’axe des abscisses.

Les complexes z = ib, b ∈ R sont les imaginaires purs et sont représentés sur l’axe des ordonnées.

Le plan est alors appelé plan complexe.
Exemple

Dans le plan complexe, on a représenté ci-contre les 
points d’affixe z tels que z=2+3i
• Re(z) = 2

• Im(z) = 3

• Re(z) = Im(z).
0 1 2 3 4 5 6

0

1

2

3

4

−3 −2 −
)
1
−1

−2 Re(z) = 2

Im(z) = 3

Im
(z
) =

Re(
z

II. Addition, multiplication par un réel et géométrie

On se place dans le repère orthonormé
(
O ;−u→,−v→

)
.

1. Addition
THÉORÈME

Si z1 = a1 + ib1 et z2 = a2 + ib2 alors z1 + z2 = (a1 + a2) + i(b1 + b2).

Si z1 est l’affixe de w−→1 et z2 celle de w−→2 alors z1 + z2 est l’affixe de w−→1 + w−→2.

2. Opposé d’un nombre complexe
THÉORÈME

L’opposé du nombre complexe z = a + ib est :

−z = (−a) + i(−b) = −a − ib.

z est l’affixe du point M. L’opposé de z noté −z est

l’affixe du symétrique de M par rapport à l’origine.

si z est l’affixe de −w→ alors −z est l’affixe de −−w→.

M(z)

M′(−z)

O
U

V

3. Soustraction
THÉORÈME

Si z1 = a1 + ib1 et z2 = a2 + ib2 alors z1 − z2 = z1 + (−z2) = (a1 − a2) + i(b1 − b2).

Si w−→1 et w−→2 sont d’affixes respectives z1 et z2 alors w−→1 − w−→2 est d’affixe z1 − z2.

Si A et B sont d’affixes zA et zB alors zB − zA est l’affixe de
−
A
→
B. 2/12
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Exercice d’application

On considère trois points A, B, C d’af-fixes :  zA = −3 + 2i, zB = 1 + i et zC = 3 − 4i.

1) Déterminer l’affixe du point D pour que ABCD soit un parallélogramme.

2) Déterminer les coordonnées du centre de ce parallélogramme.

4. Multiplication d’un complexe par un réel

THÉORÈME

Soit z ∈ C, λ ∈ R et −→w d’affixe z. Le complexe λz est l’affixe du vecteur λ−→w .

Exemple Soit A, B deux points du plan d’affixe zA = 3 − i et zB = −2 + 3i. Le vecteur 2
−→
AB

a pour affixe : 2(zB − zA) = 2(−5 + 4i) = −10 + 8i.

III. Inverse et quotient de nombres complexes

1. Conjugué d’un nombre complexe
DÉFINITION

Le conjugué d’un nombre complexe z = a + ib est le com-

plexe a − ib, noté z̄.

Si z est l’affixe de M, z̄ est l’affixe du symétrique de M par

rapport à l’axe des réels.

M(z)

M′ (z)

O U

V

THÉORÈME

1) z + z = 2Re(z) ; z − z = 2iIm(z).

2) z est réel si et seulement si z = z.

3) z est imaginaire pur si et seulement si z = −z.

PREUVE

1) On écrit z sous sa forme algébrique z = a + ib et on a donc z = a − ib. On en déduit :

z + z = a + ib + a − ib = 2a = 2 Re(z).

La seconde partie se prouve de la même façon.

2) On a z = z ⇐⇒ z − z = 0 ⇐⇒ 2i Im(z) = 0 ce qui équivaut à z ∈ R.

3) Même méthode qu’au 2).

2. Inverse d’un nombre complexe

THÉORÈME

Pour tout nombre complexe z non nul, il existe un nombre complexe z′ tel que zz′ = 1.

Ce nombre s’appelle l’inverse de z, noté
1
z

et il est tel que :

1
z
=

z

z × z
.

Si z = a + ib 6= 0 alors la forme algébrique de
z

1
est :

1
z
=

a

a2 + b2 + i 2
−b

a + b2 .

Exemple Dans la pratique, on effectue une multiplication par le conjugué du dénominateur

pour se ramener à un dénominateur réel.

1) z = 2i. On a
z
=

1
2i

=
1 −2i

3
2
i
i
)
× (−2i)

=
−2i

4
= −1

2
i.

2) z =
1

2 + 3i
=

(2 −
(2 + 3i)(2 − 3i)

=
2 − 3i
4 + 9

=
2

13
−

1
3
3

i.

3. Quotient d’un nombre complexe
DÉFINITION

Soient z1 et z2 6= 0 deux nombres complexes. On définit leur quotient par :
z

z
1

2
= z1 × z

1

2
.
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Exercice d’application Résoudre l’équation : (1 + i)z − 2 = 3 + 2i.

Correction On procède comme pour les nombres réels en isolant l’inconnue z :

(1 + i)z − 2 = 3 + 2i ⇐⇒ (1 + i)z = 5 + 2i ⇐⇒ z =
5 + 2i
1 + i

=
(5 + 2i)(1 − i)
(1 + i)(1 − i)

=
7 − 3i

2
.

L’unique solution est donc le nombre complexe : z =
7
2
− 3

2
i.

4. Opérations avec les conjugués des nombres complexes
THÉORÈME

Soient z1 et z2 deux nombres complexes.

1) z1 = z1 4) zn
1 = (z1)

n, n entier naturel.

2) z1 + z2 = z1 + z2 5)
(

z1

z2

)
=

z1

z2
, z2 6= 0.

3) z1 × z2 = z1 × z2

Exemple Démontrons que S = (1 + i)5 + (1 − i)5 est un nombre réel.

On a (1 + i)5 = (1 + i)5 = (1 − i)5. Donc S = z + z = 2 Re(z) avec z = (1 + i)5. S est donc bien

un nombre réel.
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IV. Équations du second degré
THÉORÈME

Pour tout nombre réel non nul a, l’équation z2 = a admet deux racines dans C :

Si a > 0, les racines sont
√

a et −
√

a.

Si a < 0, les racines sont i
√
|a| et −i

√
|a|.

EXEMPLES : Les solutions de : z2 = 16 sont 4 et −4. Les solutions de z2 = −5 dans C sont

i
√

5 et −i
√

5 (alors que cette équation n’a aucune solution dans R)

THÉORÈME

Soit az2 + bz + c = 0, a ∈ R∗, b ∈ R et c ∈ R. ∆ = b2 − 4ac le discriminant de cette équation.

Si ∆ = 0, l’équation a une unique solution dans R : z0 =
−b

2a
.

Si ∆ > 0, l’équation a deux solutions dans R : z1 =
−b −

√
∆

2a
et z2 =

−b +
√

∆

2a
.

∆ < 0, l’équation a deux solution dans C qui sont conjuguées :

z1 =
−b − i

√
−∆

2a
et z2 =

−b + i
√
−∆

2a
.

. REMARQUES :

Toute expression Q(z) = az2 + bz + c, a ∈ R∗, b ∈ R et c ∈ R, se factorise dans C et :

Q(z) = az2 + bz + c = a(z − z1)(z − z2).

Q(z) = az2 + bz + c = a

(
z2 +

b

a
z +

c

a

)
= a

(
z2 − Sz + P

)
avec : S = z1 + z2 = − b

a
et P = z1 × z2 =

c

a
.

Exercice d’application

Résoudre l’équation : z2 − 2z +3=0 .
Correction z2 − 2z + 3

2
= 0.

le discriminant : ∆ = (−2)² − 4 × 1 × 3 = −8. Le discriminant est strictement négatif, il y a donc

 deux solutions dans C : z1 =
2 − i

√
8

2
= 1 − i

√
2 et z2 =

2 + i
√

8
2

= 1 + i
√

2

qui sont bien complexes conjuguées.

V. Module et argument d’un nombre complexe
1. Définition  géométrique

DÉFINITION

Soit z un complexe. M (ou −w→) un point (ou un vecteur)

d’affixe z.

On appelle module de z la distance OM (ou la norme

|| w−→||). Le module de z est noté |z|.
Si z 6= 0, on appelle argument de z une mesure en radians

de l’angle
(−̂u→, O

−−→
M
)

( ou
(−u→,̂−w→)).

Un argument de z est noté arg(z).

Le complexe nul n’a pas d’argument et a pour module 0.

M(z)

|z| =
OM

arg(z)

O U

V

REMARQUE :

arg(z) peut prendre une infinité de valeurs différentes : si θ est une mesure de arg(z) alors

θ + k2π est une autre mesure de arg(z) pour k ∈ Z. On notera : arg(z) = θ [2π] et on dit que

l’argument de z vaut θ « modulo 2π » ou « à 2π près ».
Exemples

• |i| = OV = 1 et arg(i) =
(−̂u→, O

−→
V
)
=

π

2
.

• Soit M1 d’affixe −4 on a ; | − 4| = OM1 = 4 et arg(−4) =
(−u→,

̂
O
−−

M
→

1

)
= π.

• Soit M2 d’affixe 1√+ i on a :

(2
|1 + i| = OM = 12 + 12 =

√
2 d’après la formule des distances

arg(1 + i) = −u→,
̂

O
−−

M
→

2

)
=

π

4
la diagonale du carré OUM2V étant la bissectrice de

(−u→,̂−v→
)
.
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Déterminer un ensemble de points
Exercice d’application Déterminer dans le repère orthonormé (O ;−→u ,−→v ) l’ensemble des points

M d’affixe z tels que :

1) |z| = 3 2) arg(z) = −π

3
[2π]

Correction

1) |z| = 3 ⇐⇒ OM = 3.

Donc l’ensemble des points M tel que |z| = 3 est un cercle de centre O et de rayon 3.

2) arg(z) = −π

3
[2π] ⇐⇒ ̂(−→u ,

−−→
OM

)
= −π

3
[2π].

Donc l’ensemble des points M tel que arg(z) = −π

3
[2π] est une demi-droite d’origine O,

privé de O, de vecteur directeur −→u1 tel que ̂(−→u ,−→u1
)
= −π

3
[2π].

2. Calcul algébrique du module et d’un argument
THÉORÈME

Soit z = a + ib un complexe.

|z| =
√

z × z̄ =
√

a2 + b2.

Si z 6= 0 alors θ = arg(z) peut être déterminé par :





cos(θ) =
a

|z|
sin(θ) =

b

|z|

Déterminer le module et un argument d’un nombre complexe
Exercice d’application

Déterminer le module et un argument du complexe z = −1 + i
√

3.

Correction

1) On calcule d’abord le module : |z| =
√
(−1)2 + (

√
3)2 = 2.

2) On cherche donc θ = arg(z) tel que





cos(θ) =
−1
2

sin(θ) =

essa√
3

2

cos(θ) =
−1
2

⇐⇒ cos (θ) = cos
(

2π

3

)
⇐⇒





θ =
2π

3
[2π]

ou

θ = −2π

3
[2π]

Or sin(θ) > 0 donc arg(z) = θ =
2π

3
[2π].

3. Égalité de deux nombres complexes par module et argument
THÉORÈME

Deux nombres complexes non nuls sont égaux si et seulement si ils ont même module et même argument. 
REMARQUES :

|z| = 0 ⇐⇒ z = 0.

z ∈ R ⇐⇒ arg(z) = 0 ou π [2π] ou z = 0.

z est un imaginaire pur ⇐⇒ arg(z) =
π

2
[2π] ou z = 0.

Attention, pour l’égalité des arguments, il faut la penser « à 2π » près.

4. Passage d’une forme à l’autre
THÉORÈME

Soit z un complexe non nul. z = a + ib = r (cos(θ) + i sin(θ))





|z| =
√

a2 + b2

cos(θ) =
a

|z|

sin(θ) =
b

|z|

⇐⇒





a = r cos(θ)

b = r sin(θ)
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VI. Module, argument et opérations avec les nombres complexes

Dans les deux théorèmes qui suivent z et z′ sont des nombres complexes.

THÉORÈME

1) z × z = |z|2
2) | − z| = |z| arg(−z) = arg(z) + π [2π] pour z 6= 0.

3) |z| = |z| arg(z) = − arg(z) [2π] pour z 6= 0.

4) |z × z′| = |z| × |z′| arg(z × z′) = arg(z) + arg(z′) [2π] pour z 6= 0

et z′ 6= 0.

5) |zn| = |z|n pour n ∈ N arg(zn) = n arg(z) [2π] si z 6= 0.

PREUVE

1) Ce point a été déjà prouvé précédemment.

2) Il suffit d’utiliser la propriété de symétrie par rapport à l’origine.

3) De même avec la symétrie par rapport l’axe des ordonnées.

4) Si z = 0 ou z′ = 0, alors |zz′| = 0 et |z||z′| = 0 d’où l’égalité.

Si z, z′ ∈ C∗ alors : z = r(cos(θ) + i sin(θ)) et z = r′(cos(θ′) + i sin(θ′)).
zz′ = rr′(cos(θ) cos(θ′)− sin(θ) sin(θ′) + i(cos(θ) sin(θ′) + cos(θ′) sin(θ)).

Ce qui donne d’après les formules d’addition pour sinus et cosinus :

zz′ = rr′(cos(θ + θ′) + i sin(θ + θ′)).

Or, rr′ > 0 donc zz′ = rr′ = |z||z′| et arg(zz′) = θ + θ′ = arg(z) + arg(z′) [2π]. Ce qui

prouve bien le point 4).

5) Ces égalités se montrent par récurrence.

THÉORÈME

1) z 6= 0 :
∣∣∣∣
1
z

∣∣∣∣ =
1
|z| arg

(
1
z

)
= − arg(z) [2π]

2) z′ 6= 0 :
∣∣∣ z

z′

∣∣∣ = |z|
|z′| arg

( z

z′
)
= arg(z)− arg(z′) [2π] pour z 6= 0

PREUVE

1) z est un complexe non nul. On a z × 1
z
= 1 qui donne d’une part

∣∣∣∣z ×
1
z

∣∣∣∣ = 1 c’est-à-dire

|z| ×
∣∣∣∣
1
z

∣∣∣∣ = 1. Et enfin
∣∣∣∣
1
z

∣∣∣∣ =
1
|z| .

D’autre part, arg
(

z × 1
z

)
= arg(1)[2π] donne arg(z) + arg

(
1
z

)
= 0[2π].

On en conclut le point 1).

2) z et z′ deux complexes avec z′ 6= 0∣∣∣ z

z′

∣∣∣ =
∣∣∣∣z ×

1
z′

∣∣∣∣ = |z| ×
∣∣∣∣

1
z′

∣∣∣∣ = |z| × 1
|z′| =

|z|
|z′|

et si z 6= 0 : arg
( z

z′
)
= arg

(
z × 1

z′

)
= arg(z) + arg

(
1
z′

)
= arg(z)− arg(z′) [2π].
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Exercice d’application

1) z1 = −
√

3 + i et z2 =
1
6
−

√
3

6
i deux nombres complexes. Déterminer le module et un

argument de z1z2.

2) Déterminer la forme algébrique de

(
−1

2
+

√
3

2
i

)2016

.

Correction

1) • |z1| =
√

3 + 1 = 2 et |z2| =
√

1
36

+
3

36
=

1
3

. Donc : |z1z2| = |z1||z2| = 2 × 1
3
=

2
3

.

• θ1 = arg(z1) est tel que





cos(θ1) =
−
√

3
2

sin(θ1) =
1
2

sin(θ1) =
1
2
⇐⇒ θ1 =

π

6
[2π] ou

5π

6
[2π], or cos(θ1) < 0 donc θ1 =

5π

6
[2π]

θ2 = arg(z2) est tel que





cos(θ2) =

1
6
1
3

sin(θ2) =

√
3

6
1
3

⇐⇒





cos(θ2) =
1
2

sin(θ2) =

√
3

2

cos(θ2) =
1
2
⇐⇒ θ2 =

π

3
[2π] ou

−π

3
[2π], or sin(θ2) > 0 donc θ2 =

π

3
[2π].

Donc : arg(z1z2) = arg(z1) + arg(z2) =
5π

6
+

π

3
=

7π

6
[2π].

2) On remarque : z = −1
2
+

√
3

2
i = −3z2 et donc : |z| = 3 × |z2| = 1 et arg(z) = arg(z2) + π[2π] = −2π

3
[2π]

arg
(

z2016
)
= 2016 × arg(z) = 2016 × 2π

3
[2π] = 672 × 2π[2π] = 0[2π].

De plus |z| = 1 donc
∣∣∣z2016

∣∣∣ = |z|2016 = 1.

On en déduit : z2016 = 1 × (cos(0) + i sin(0)) = 1.

VIII. Applications des nombres complexes à la géométrie
THÉORÈME

Soient A et B deux points distincts d’affixes respectives zA et zB.

AB = ||−→AB|| = |zB − zA| et arg(zB − zA) =
̂(−→u ,

−→
AB
)
[2π].

Soient A, B, C et D quatre points distincts d’affixes respectives zA, zB, zC et zD.

arg
(

zD − zC

zB − zA

)
=

̂(−→
AB,

−→
CD
)
[2π].

PREUVE

• Soient A et B deux points distincts d’affixes respectives zA et zB.

Il existe un unique point M d’affixe z tel que O
−−→

M =
−
A
→
B. Les affixes de ces deux vecteurs

sont donc égales ce qui donne : z = zB − zA.

(̂
BOn en déduit que |z| = |zB − zA et arg(z

)
) = arg(z −

)
zA)[2π].

(
|
−̂u→, O

−−→
M −u→,

−
A
→
BDonc OM = AB = |zB − zA| et = = arg(zB − zA)[2π].

• Soient A, B, C et D quatre points distincts d’affixes respectives zA, zB, zC et zD.

Par les propriétés de l’argument on a :
(

arg
zD − zC

zB − zA

)
= arg(zD − zC)− arg(zB − zA).

Ce qui donne par définition de l’argument :

arg
zD − zC

zB − zA

( )
=
(−̂u→, C

−→
D
)
−
(−̂u→,

−
A
→
B
)
=
(−̂

A
→
B,−u→

)
+
(−̂u→, C

−→
D
)
=
(−̂

A
→
B, C

−→
D
)
[2π]

la dernière égalité résultant de la relation de Chasles pour les angles de vecteurs.
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Ensembles de pointsExercice d’application

Dans chacun des cas suivants, déterminer l’ensemble des points M d’affixe z satisfaisant la

condition :

• |z + 1 − i| = 3.

• |z − 3| = |z + 2 + 3i|.
• arg(z − 1 − i) =

π

4
[2π].

• arg
(

z − 1 + 2i
z + 1

)
=

π

2
[π].

Correction

• |z + 1 − i| = 3 ⇐⇒ |z − (−1 + i)| = 3 ⇐⇒ AM = 3 avec A point d’affixe zA = −1 + i. Donc M appartient au cercle

de centre A (−1 ; 1) et de rayon 3.

• |z − 3| = |z + 2 + 3i| ⇐⇒ |z − 3| = |z − (−2 − 3i)| ⇐⇒ BM = CM avec B d’affixe zB = 3 et C d’affixe zC = −2 − 3i.
Donc M appartient à la médiatrice de [BC].

• arg(z − 1 − i) =
π

4
[2π] ⇐⇒ arg(z − (1 + i)) =

π

4
[2π] ⇐⇒ ̂(−→u ,

−→
EM

)
=

π

4
[ 2π] avec E

d’affixe zE = 1 + i.

Donc M appartient à la demi-droite d’origine E privé de E, de vecteur directeur −→u1 tel que
̂(−→u ,−→u1

)
=

π

4
.

• arg
(

z − 1 + 2i
z + 1

)
=

π

2
[π] ⇐⇒ ̂(−−→

GM,
−→
FM

)
=

π

2
[π] avec F d’affixe zF = 1 − 2i et G d’affixe

zG = −1.

Donc M appartient au cercle de diamètre [FG] privé des points F et G.

REMARQUES :

1) Trois points distincts sont alignés si et seulement si :
(−̂

A
→
B,

−
A
→
C
)
= 0 [π] ce qui équivaut à :

arg
zC − zA

zB − zA

( )
= 0 [π] ⇐⇒ z

z
C

B −
−

z

z

A

A est un réel non nul.

2) Un triangle ABC est rectangle en A si et seulement si :
(−̂

A
→
B,
−
A
→
C
)
=

π

2
[π] ; c’est-à-dire :

C − A

zB − zA

( )
arg

z z
=

π

2
[π] et B 6= A et C 6= A ⇐⇒ z

z
C

B −
−

z

z

A

A est un imaginaire pur non nul.

ombres complexes et configurations géométriques
Exercice d’application

A, B, C trois points d’affixes respectives : zA = 2i, zB = 2 + i, zC = 1 − i.

Démontrer que le triangle ABC est isocèle rectangle en B.

Correction

AB = |zB − zA| = |2− i| =
√

22 + (−1)2 =
√

5 et BC = |zC − zB| = | − 1− 2i| = |1+ 2i| =
√

5

donc ABC isocèle en B. D’autre part :

zA − zB

zC − zB
=

−2 + i
−1 − 2i

=
(−2 + i)(−1 + 2i)

1 + 4
= −i.

Donc
( ̂

B
−→

A, B
−→

C
)
= arg

(
zA − zB

zC − zB

)
= arg(i) =

π

2
[2π] donc ABC est rectangle en B.

IX. Forme exponentielle
1. Écriture exponentielle des complexes de module 1

DÉFINITION

Tout nombre complexe de module 1 et d’argument θ peut s’écrire sous la forme :

cos(θ) + i sin(θ) = eiθ .
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Exemples

1) Placer sur le cercle trigonométrique les points Mi d’affixes

zi tels que : z1 = ei π
2 ; z2 = eiπ ; z3 = ei 3π

2 ; z4 = ei2π ;

z5 = ei 2π
3 .

2) La forme algébrique des complexes précédents est :

z1 = ei π
2 = cos

(π

2

)
+ i sin

(π

2

)
= i ;

z2 = eiπ = cos(π) + i sin(π) = −1 ;

z3 = ei 3π
2 = cos

(
3π

2

)
+ i sin

(
3π

2

)
= −i ;

z4 = ei2π = cos(2π) + i sin(2π) = 1 ;

z5 = ei 2π
3 = cos

(
2π

3

)
+ i sin

(
2π

3

)
= −1

2
+ i

√
3

2
.

M1

M2

M3

M4

M5

O U

V

2. Cas général

DÉFINITION

Tout complexe z 6= 0 s’écrit sous la forme z = reiθ avec r = |z| et θ ≡ arg(z)[2π].

Cette écriture est appelée « forme exponentielle du complexe z ».

Réciproque : Si z ∈ C∗ et z = reiθ avec r > 0 alors r = |z| et θ = arg(z)[2π].

REMARQUE : Pour déterminer la forme exponentielle d’un complexe z, on reprend la

méthode 6 pour la détermination de r et de θ.

Exemples

1) Déterminons la forme exponentielle de z1 = −2i et z2 = 1 + i.

On peut déterminer le module et un argument par la méthode précédemment donnée mais

on peut aussi opérer de la manière suivante :

z1 = −2i = 2(−1 + 0i) = 2
(

cos
(−π

2

)
+ i sin

(−π

2

))
= 2e−i π

2

z2 = 1 + i =
√

2
(

1√
2
+ i

1√
2

)
=

√
2
(

cos
(π

4

)
+ i sin

(π

4

))
=

√
2ei π

4 .

2) Déterminons la forme algébrique de z3 = 4ei 2π
3 :

z3 = 4
(

cos
(

2π

3

)
+ i sin

(
2π

3

))
= 4

(
−1

2
+

√
3

2
i

)
= −2 + 2i

√
3.

3. Calculs avec la notation exponentielle

THÉORÈME

Pour tous nombres réels θ1, θ2 :

1) eiθ1 × eiθ2 = ei(θ1+θ2) 3)
1

eiθ1
= e−iθ1 = eiθ1

2)
(

eiθ1
)n

= einθ1 , n ∈ Z 4)
eiθ1

eiθ2
= ei(θ1−θ2)

REMARQUES :

Ces propriétés sont admises. Elles résultent du fait que |eiθ | = 1 et des propriétés des

arguments.

La propriété 2) s’appelle formule de Moivre quand on l’écrit sous la forme

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ), n ∈ Z
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Utilisation de la forme exponentielle

Exercice d’application

1) Mettre sous forme exponentielle : z1 = −
√

3 + i, z2 = e−i π
6 z2

1 , z3 =
2z1

e−i π
6

.

2) Déterminer les entiers n tels que (−z1)
n est un nombre réel.

3) Soit Z =
1 + i√
6 + i

√
2

un complexe.

a) Déterminer la forme exponentielle du complexe Z.

b) Déterminer la forme algébrique du complexe Z. En déduire les valeurs exactes de

cos
( π

12

)
et sin

( π

12

)
.

Correction

1) En employant la méthode 6 on trouve |z1| = 2 puis arg(z1) =
5π

6
[2π]. Donc z1 = 2ei 5π

6 .

On en déduit : z2 = e−i π
6 ×

(
2ei 5π

6

)2
= 4e−i π

6 × e
2×5π

6 = 4iei 9π
6 = 4ei 3π

2 = −4i

et z3 =
2 × 2ei 5π

6

5e−i 5π
6

=
4
5

ei( 5π
6 + π

6 ) =
4
5

eiπ = −4
5

.

2) z1 = 2e−i π
6 et donc (−z1)

n =
(

2ei −π
6

)n
= 2nei −nπ

6 .

(−z1)
n est réel ⇐⇒ −nπ

6
= 0[π] ⇐⇒ il existe k ∈ Z tel que

−nπ

6
= kπ ⇐⇒ n = −6k.

Donc (−z1)
n est réel si et seulement si n est un multiple de 6.

3) a) On a : 1 + i =
√

2ei π
4 et

√
6 + i

√
2 = 2

√
2ei π

6 donc

Z =
1 + i√

6 + i
√

2
=

√
2ei π

4

2
√

2ei π
6
=

1
2

ei( π
4 − π

6 ) =
1
2

ei π
12 est la forme exponentielle de Z.

b) Z =
(1 + i)(

√
6 − i

√
2)

8
=

√
6 +

√
2

8
+ i

√
6 −

√
2

8
est la forme algébrique de Z.

On a donc :
1
2

e
i
π

12 =

√
6 +

√
2

8
+ i

√
6 −

√
2

8
.

D’où :
1
2

(
cos

( π

12

)
+ i sin

( π

12

))
=

√
6 +

√
2

8
+ i

√
6 −

√
2

8
.

On en déduit : cos
( π

12

)
=

√
6 +

√
2

4
et sin

( π

12

)
=

√
6 −

√
2

4
.

REMARQUE :

La notation exponentielle permet de retrouver les formules d’addition pour le cosinus et le sinus.  

4. LA LINEARISATION
a-Formules et applications

Théorème : Formules de Moivre

∀n ∈ Z, ∀θ ∈ R, einθ =
(
eiθ

)n
c’est à dire cos(nθ) + i sin(nθ) = (cosθ + i sin θ)n

APPLICATION : Pour exprimer cosnθ ou sinnθ en fonction de cos θ et de sin θ.

1. On remarque que cosnθ = Re[(cos θ + i sin θ)n] et que sinnθ = Im[(cos θ + i sin θ)n]

2. Puis on utilise la formule du binôme pour développer (cos θ + i sin θ)n

3. On en extrait alors la partie réelle et la partie imaginaire pour obtenir cosnθ et sinnθ.

Théorème : Formules d’Euler
Soit θ un réel quelconque. Alors : cos θ =

eiθ + e−iθ

2
et sin θ =

eiθ − e−iθ

2i

b-LINEARILISATION : Pour linéariser un produit de sinus et de cosinus :
1. On remplace les cos(a.θ) et les sin(b.θ) à l’aide des formules d’Euler.
2. On développe l’expression obtenue à l’aide de la formule du binôme.

3. On regroupe les termes conjugués entre eux.
4. On réutilise les formules d’Euler pour retrouver des cosinus et des sinus.

Remarque . Ces formules permettent de linéariser (transformer des produits en sommes) des expressions trigo-
nométriques. Cette transformation est particulièrement utile lors du calcul d’intégrales.
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5.Nombres complexes et transformations

a-Ecriture complexe d’une translation

Theorème :
−w→ est un vecteur d’affixe b.
L’écriture complexe de la translation de vecteur −w→, qui transforme M(z) en M ′(z′) est
′z = z + b.

M ′(z′)

M(z)
−w→

t−w→(M) = M ′

Theorème :
Ω est un point d’affixe ω et k un réel non nul. L’écriture complexe de l’homothétie de
centre Ω et de rapport k, qui transforme M(z) en M ′(z′) est z′ − ω = k(z − ω).

Ω

M(z)

M ′(z′)

Ω
−−

M
→

′ = k.Ω
−−

M
→

h est l’homothétie de centre Ω et de rapport k ; M ′ = h(M) équivaut à Ω
−−

M
→

′ = kΩ
−−

M
→

.

On note z et z′ les affixes respectives de M et M ′, l’affixe de Ω
−−

M
→

′ est z′ − ω, celle de kΩ
−−

M
→

est
k(z − ω). Donc M ′ = h(M) équivaut à z′ − ω = k(z − ω).

b-Ecriture complexe de l'homothétie

c-Ecriture complexe d’une rotation

Ω

M(z)

M ′(z′)

Ω
−−

M
→

′ = k.Ω
−−

M
→

Ω

M(z)

M ′(z′)
Ω
−−

M
→

′ = k.Ω
−−

M
→

k<0k>0 0<k<1

Theorème :
Ω est un point d’affixe ω et θ un réel. L’écriture complexe de la rotation de centre Ω et
d’angle de mesure θ, qui transforme M(z) en M ′(z′) est z′ − ω = eiθ(z − ω).

M(z)

M ′(z′)

θ

θ = (Ω
−−

M
→

; Ω
−−

M
→

′)

R est la rotation de centre Ω et d’angle de mesure θ ; M ′ = R(M) équivaut à (Ω
−−

M
→

; Ω
−−

M
→

′) = θ et ΩM ′ = ΩM .

On note z et z′ les affixes respectives de M et M ′, l’affixe de Ω
−−

M
→

′ est z′ − ω, celle de Ω
−−

M
→ 

est(z − ω).

Donc M ′ = R(M) équivaut à z′ − ω = eiθ(z − ω).
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