Nombres complexes

Histoire

00 L'ensembleldelnombres!lelplusisimplelesticeluildelnombresientiersinaturels,:notéINletlquilcontientllesinombresiquel
vouslconnaissezldepuisllongtemps:/051151213...

00 Quellestllelnombrelentiernaturellquilajoutéla’7ldonnel12?
00 Quellestllenombrelentiernaturellquilajoutélal12ldonnel71?

00 L'exemplelprécédentimontrelquell’ensemblelNlestl«/insuffisant»carlcertainesléquationsisimplesin’yltrouventipaside!
solution..On’peutlalorsiutiliserll’ensembleldeslentiersirelatifs,notélZ letquilcontient!INetlleslopposésidesientiersinaturels!
(parlexemplel:l—3[;1—2).

00 Résoudreldans/INlpuisldans[ZIl'équationl:[2xI-+[8=[0.
00 Mémelquestionlavecll’équationl:[2x]+71=[0.

00 Delnouveaull’ensemblelZlestlen'quelquelsortelinsuffisantpourlexprimerllesisolutionsldelcertainesiéquations.

00 De quel autre ensemble de nombres a-t-on au minimum besoin pour que 1’équation du 2x +7 = 0 ait une solution ?

00 Dans ce nouvel ensemble quelles sont les solutions de 1'équation : 9x* = 16?

00 Décrire I'ensemble de nombres dont on a besoin au minimum pour que 1’'équation/précé-dente ait une solution. On
notera Q cet ensemble.

00 Modifier I'équation précédente pour qu’elle n’admette pas de solution dans ’ensemble des rationnels. Dans quel
ensemble faut-il travailler pour pouvoir dire qu’elle a deux solutions ?

00 Que pouvez-vous dire de I'équation x* + 1 = 0 en terme de solutions dans les ensembles de nombres précédents ?

00 Compléter le schéma commencé ci-dessous, qui montre les inclusions successives des ensembles de nombres en donnant

a chaque fois une équation qui n’a pas de solution dans I’ensemble, mais en a une dans le suivant.

I. Forme algébrique et représentation d’'un nombre complexe

1. Définition & vocabulaire
B THEOREME

Il existe un ensemble noté C appelé ensemble des nombres complexes qui possede les propriétés suivantes :

m C contient I’ensemble des nombres réels ;
= il contient un nombre i tel que i = —1;
m ilestmuni d'une addition et d"une multiplication qui ont les mémes propriétés que dans
R, I’ensemble des nombres réels.
Exemples
Les nombres —1; 0, 3/4; /2 sont des nombres réels donc ce sont aussi des éléments de C.
A T'aide du nombre i et de la multiplication: —i; 2i; iv/2... sont aussi dans C.

Avec les additions, les nombres suivants sont aussi dans C : —1 +1; Vv 2+2i

M DEFINITION
Tout nombre complexe peut s’écrire sous la forme : z = a +ib aveca, b € R.
Cette écriture est appelée forme algébrique de z :
m 7 est appelée partie réelle de z, notée Re(z).

m b estappelée partie imaginaire de z, notée Im(z).

Lorsque Im(z) = 0, z = a est réel.

Lorsque Re(z) = 0, z = ib est appelé imaginaire pur.

Soient z; = 1+ 2i, zp = —1 + 1, des nombres complexes. Déterminer les

parties réelles et imaginaires des complexes : z3 = 21 X 23, z4 = z3.
[ENEE 2, = (1+2i)(-1+i)=-1+i-2i+22=-1-i—2=-3—i

Donc Re(z3) = —3 et Im(z3) = —1.
z4=(14+2)%=1+4i+ (20)2=1+4i—4= —3+4i DoncRe(z4) = —3 et Im(z) = 4.
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B THEOREME

Soient zq = a; +1b; et zp = ay + iby deux nombres complexes :

a, = a

by = b

L’ écriture algébrique d"un nombre complexe est unique.
ExemplelSoitzI="2x]—1[41i(3]—y),IxI€[Rletlyl€[R, lunlcomplexe.
On[aﬂz::[O[si:etﬂseulement:siZZxﬂ—Ulﬂ:ﬂOﬂetBﬂ—[yﬂ:[ODc’est—é-direﬂx::];_etﬂyﬂzﬂ?).

21=ZZ<:>{

2. Représentation graphique des complexes
. N 2 = - =
Le plan est muni d'un repere orthonormé direct : (O ;ou, OV) = (O ; U, 0 )
B DEFINITION

Tout nombre complexe z = a +ib avec a,b € R peut

étre représenté dans ce repére par :
. . 29 axe des imaginaires
® un unique point: M (a ; b), appelé image

ponctuelle de z = a + ib. b M(a +ib)

—
® un unique vecteur : OM (a ; b) appelé image

!
!
vectorielle de z = a + ib. w \
— |
On dit que z = a + ib est I'affixe du point M et du V_ec>teur OM. T TS
On note souvent M(z) ou M(a + ib) et OM(z) ou OM(a + ib). O u a

= Les complexes z = a € R sont les nombres réels et sont représentés sur 1’axe des abscisses.
m Les complexes z =1ib, b € R sont les imaginaires purs et sont représentés sur 1’axe des ordonnées.

= Le plan est alors appelé plan complexe.

Exemple 4
Dans le plan complexe, on a représenté ci-contre les Im(z) =3 5
points d’affixe z tels que z=2+3i Sl
Re(z) =2
Im(z) =3 (1) 1
Re(z) = Im(z). j3 jz jl 0 i ) ; i ; é
ST
> a4 Re(z) =2

II. Addition, multiplication par un réel et géométrie

On se place dans le repereorthonormé (O ; i, 7).

1. Addition
B THEOREME

m Sizy=a+ibjetzy =ap+ibyalors z; +zp = (a1 +ap) +1i(by + by).
m _Si z; est 'affixe de a71> et z, celle de a72> alors z1 + zp est I’affixe de a71> + 172

2. Opposé d’'un nombre complexe

M THEOREME
m L'opposé du nombre complexe z = a +ib est : W)
. . V= -
~z=(—a)+i(-b) = —a—ib. e
m z est l'affixe du point M. L'opposé de z noté —z est | % —5 g lll % {
l'affixe du symétrique de M par rapport a I’origine. o i 1
= siz estlaffixe de W alors —z est 'affixe de — . M (~z)

3. Soustraction
B THEOREME

m Sizy =a)+ibjetzy =ap+ibyalorszy —zp = z1 + (—2z2) = (ay —az) +i(by — by).

m Si a—71> et a—7>2 sont d’affixes respectives z; et z, alors a—71> — 7/75 est d’affixe z; — z».
m Si A et B sont d’affixes z, et zp alors zz — z,4 est 'affixe de zﬁ 2/1 9
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Exercice d’application

On considere trois points A, B, C d’af-fixes: z4= —3 +2i,zg=1+1ietzc=3 — 4i.
1) Déterminer I'affixe du point D pour que ABCD soit un parallélogramme.

2) Déterminer les coordonnées du centre de ce parallélogramme.

4. Multiplication d’un complexe par un réel

B THEOREME

Soitz € C, A € Ret W d’affixe z. Le complexe Az est I'affixe du vecteur AT,

Exemple Soit A, B deux points du plan d’affixe z4 = 3 —ietzp = —2 4 3i. Le vecteur 21@
a pour affixe : 2(zp —z4) = 2(—5+4i) = —10 + 8i.

II1. Inverse et quotient de nombres complexes

1. Conjugué d’un nombre complexe

B DEFINITION
m Le conjugué d'un nombre complexe z = a + ib est le com- v M(i)'r
plexe a — ib, noté z. 1 | | /‘/ } J
m Siz est 'affixe de M, Z est laffixe du symétrique de M par ER U
Iaxe des réel A
t N 7 2 . - \‘
rapport a I’axe des réels T

B THEOREME
1) z+7Z =2Re(z) ; z — Z = 2illm(z).
2) z est réel si et seulement si Z = z.

3) z est imaginaire pur si et seulementsiz = —z.

PREUVE

On écrit z sous sa forme algébriquez = a '+ ib eton a donc z = a — ib. On en déduit :
z+z=a+ib+ a—ib =2a = 2Re(z).

La seconde pattie se prouve de la méme fagon.
Onaz=z<=2z—z=0<= 2ilm(z) = 0 ce qui équivauta z € R.

Méme méthode qu’au 2).

2. Inverse d’un nombre complexe

M THEOREME
Pour tout nombre complexe z non nul, il existe un nombre complexe z’ tel que zz' = 1.

1
Cenombre s’appelle l'inverse de z, noté 2 etil est tel que:

1 z
z zxz
Siz = a +1ib # 0 alors la forme algébrique de ! est: o 5 L i
z z  a2+b2 a2+ b2
Exemple Dans la pratique, on effectue une multiplication par le conjugué du dénominateur
pour se ramener a un dénominateur réel.
z:21.Ona1:l:_72i:_—2i:—li
z  2i 2ix(—2i) 4 2
. 1 (2 —3i) _2_31_3_11_

T 243 (2+3)(2-23i) 4+9 13 13

3. Quotient d’un nombre complexe
M DEFINITION

. A . z 1
Soient z; et zp # 0 deux nombres complexes. On définit leur quotient par : Z—l =z % .
2 2
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2 ECE I IEIEE Résoudre l'équation : (1 +1i)z —2 = 3 + 2i.
On procede comme pour les nombres réels en isolant I'inconnue z :

. L . 542 (5+42i)(1—i) 7-3i
(1+i)z—2=342i<= (1+i)z=5+2i<=z= 151 (+)a=y ~ 2

L'unique solution est donc le nombre complexe : z =

NN

— =L

2

4. Opérations avec les conjugués des nombres complexes

B THEOREME
Soient z; et z; deux nombres complexes.
0z =12 4) zJ = (z7)", n entier naturel.
— = i Z1
2)z] +2; =21 + 723 5) <_1>::1,Z27éo,
Z Z

3)21 X Zp =21 X2

Exemple Démontrons que S = (1 +1)° 4 (1 —1)° est un nombre réel.
Ona(1+i)5=(1+i)°=(1-i)° DoncS =z+Z=2Re(z) avec z = (1 +i)>. Sest donc bien

un nombre réel.
“% @
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IV. Equations du second degré

B THEOREME

Pour tout nombre réel non nul 4, I’équation z

2 — g admet deux racines dans C :

m Sia > 0, les racines sont \/a et —/a.
m Sia <0, les racines sontiy/|a| et —iy/|al.

EXEMPLES : Les solutions de : z2 = 16 sont 4 et —4. Les solutions de z> = —5 dans C sont

iv/5 et —iv/5 (alors que cette équation n’a aucune solution dans R)

B THEOREME

Soit az> + bz +c = 0,ac R, bcRetccR. A= b? — 4ac le discriminant de cette équation.

—b
m Si A =0, l'équation a une unique solution dans R : zg = PR
—b— VA —b A
m SiA > 0,l'équation a deux solutions dans R : z; = T\/_ etz = ;7&\/_‘

m A < 0,l'équation a deux solution dans C qui sont conjuguées :

Z1 =

—b—iv—A —b+iv—A
— etzp = ———.

2 2a

. REMARQUES :

m Toute expression Q(z) = az> +bz+c,a € R*, b € Retc € R, se factorise dans C et :

Qz) =az? +bz+c=a(z—2)(z—2).

b b
[ Q(z):azz—i—bz—i—c:a(zz—i-gz—i-g) za(zz—Sz—f—P) avec:S:zl—i—zz:—zl etP:zl><22:§.
‘Exercice d'application:

Résoudre I'équation : 22 — 2z +3=0 .

Carestiont| > — 2z +3 = 0.

le discrimidant : A = (—2)* — 4 x 1'x 3 = =8. Le discriminant est strictement négatif, il y a donc
2 — 18
2

qui sont bien complexes conjuguées.

deuxsolutionsdans C: 7, =

.
L1-iv2 et 2= +2“/g=1+i\@

V. Module et argument d’un nombre complexe
1. Définition géométrique

M DEFINITION

Soit z un complexe. M (ou E?) un point (ou un vecteur)
d’affixe z:

M(z)

o
e

On appelle module de z la distance OM (ou la norme N
|| ). Le module de z est noté |z. 4P\;///
Si z #.0, on appelle argument de z une mesure en radians P /\iat%@

= f

de l'angle (7,(_3—]\71) (ou (ﬁ)) * 0

Un argument de z est noté arg(z).

Le complexe nul n’a pas d’argument et a pour module 0.

REMARQUE :

arg(z) peut prendre une infinité de valeurs différentes : si 6 est une mesure de arg(z) alors
0 + k27t est une autre mesure de arg(z) pour k € Z. On notera : arg(z) = 0 [271] et on dit que
I'argument de z vaut 8 « modulo 277 » ou «a 27t pres ».

Exemples

/_:
o |ij =0V =1etarg(i) = (7,0V) = g
o Soit M; d’affixe —4ona; | —4| = OM; =4 etarg(—4) = (7,0 1) =T
e Soit M, d’affixel +iona:

|1+i|] = OM, = V12 + 12 = V2 d’apres la formule des distances
arg(1+1) = (7, OMZ) = g la diagonale du carré OUM,V étant la bissectrice de (ﬂ)
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Déterminer un ensemble de points
Déterminer dans le repére orthonormé (O ; 7, 7) ’ensemble des points
M d’affixe z tels que :
|z =3 2) arg(z) = — = [271]

1) |z]| =3 < OM =3.
Donc I’ensemble des points M tel que |z| = 3 est un cercle de centre O et de rayon 3.

2) arg(z) = — 2 [27] = (7,0M) = -3 2]

Donc 'ensemble des points M tel que arg(z) = —g [271] est une demi-droite d’origine O,
privé de O, de vecteur directeur ] tel que (ﬁ) = —g [27].

2. Calcul algébrique du module et d’un argument

M THEOREME
Soit z = a + ib un complexe. 4
B |z| =VzxZ=Va?+D% cos(d) = Iz|
m Siz # 0alors 6 = arg(z) peut étre déterminé par : ) b
sin(f) = H
Déterminer le module et un argument d’un nombre complexe
Exercice d'application
Déterminer le module et un argument du complexe z = —1 +1V/3.
1) On calcule d’abord le module : |z| = \/(—1)2 + (V3)2= 2.
—
cos(f) = =
2) On cherche donc 6 = arg(z) tel que
sin(e), £ W2
2
2r
. ) 6y = —|[27] ' o
cos(6) = *7 = cos(6) = cos <?7T) A/ M Orsin(f) > 0 donc arg(z) = 0 = = [27].
0 = — g
B 8

3. Egalité de deux nombres complexes par module et argument
B THEOREME

Deux nombres complexes non nuls sont égaux si et seulement si ils ont méme module et méme argument.
REMARQUES §

P |z| I =z =
m z € R<= arg(z) =0oumr [27t] ouz = 0.
® |z est un imaginaire pur <= arg(z) = T [27t] ouz = 0.

m Attention, pour 1'égalité des arguments, il faut la penser «a 27t » pres.

4. Passage d’une forme a l'autre
B THEOREME

Soit z un complexe nonnul. z = a +ib = r (cos(6) + isin(6))

|z] = Va%2+0b?
. a = rcos(0)
cos(f) = — —
v i b = rsin(0)
. b
sin(f) = il
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VI. Module, argument et opérations avec les nombres complexes

B o /
Dans les deux théoremes qui suivent z et z' sont des nombres complexes.

M THEOREME
1)zxZ=|z[?
2)| —z| = |z| arg(—z) = arg(z) + 7t [27t] pour z # 0.
3) |z| = |z arg(z) = —arg(z) [27] pour z # 0.
4) |z x 2| = |z| x |Z/] arg(z x z') = arg(z) + arg(z’) [271] pour z # 0

etz #0.
5) |z"| = |z|" pour n € N arg(z") = narg(z) [27] siz # 0.

V PREUVE
Ce point a été déja prouvé précédemment.
11 suffit d"utiliser la propriété de symétrie par rapport a I’origine.
De méme avec la symétrie par rapport I’axe des ordonnées.
Siz=0ouz =0,alors |zz'| = 0 et |z||z'| = 0 d’ou l'égalité.
Siz,z' € C*alors:z = r(cos() +isin(6)) et 2= r/(cos(6') +isin(0)).
zz' = r'(cos(8) cos(8') — sin(6) sin(0") + i(cos (@) sin(6") + cos(#') sin(6)).
Ce qui donne d’apreés les formules d’addition pour sinus et cosinus :

zz' = r'(cos(0 + @) +isin(6+6')).

Or, rr' > 0 donc zz' = rr' = [z||Z| et arg(zZ) = 0+ 6’ = arg(z) + arg(z’) [27]. Ce qui

prouve bien le point 4).

Ces égalités se montrent par récurrence.

M THEOREME
1)z#0:|= Tt ar, E = —arg(z) [27]
20z 8lz)~ %8
2)Z8£ 0 5 = % arg (g) = arg(z) —arg(z’) [27] pour z # 0
PREUVE
z est un complexe non nul. On a z x % = 1 qui donne d’une part |z x %‘ = 1 c’est-a-dire

1
|z

1 1
- ‘ = 1. Et enfin
z z

s

D’autre part, arg (z X %) = arg(1)[27] donne arg(z) + arg (%) = 0[27].

On en conclut le point 1).

z et 2/ deux complexes avec z' # 0

z 1
= g% 5

z |
etsiz # 0:arg (;) = arg (z X %) = arg(z) + arg (%) = arg(z) — arg(Z’) [271].

= lel x| 3| = el x o =
o 7 |Z'|_|Z/
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Exercice d’application

1)z = *\/§+iet22 =
argument de z;z5.

V3.

— 5! deux nombres complexes. Déterminer le module et un

N =

\/g ) 2016

1
2) Déterminer la forme algébrique de (— =

272
Correction
1 8 1 1 2
1 e |z1]=vV3+1=2et|z| = \/%—i— % g.Donc: |z122| = |z1]|22] = 2 x 3= 3
cos(t) = __\/5
o 01 = arg(z;) est tel que 2
. 1
sm(Gl) = 5
sin(f1) = = < 6, = % [27t] ou 5% [271], or cos(6;) < 0 donc 6y = 5%[27‘(]
1
6
cos(0 = —
(©2) 1 cos(6r) = %
0, = arg(zp) est tel que 3\/_5 =
3
sin() = —2 sin(e) = X2
1 2
q 8
cos(fp) = 5 = 0, = g[27'(] ou ?[27‘(], or sin(f,) > 0 donc 0, = g[Zn].
) 7
Donc : arg(z1zp) = arg(z1) + arg(zz) = TR [27].

6 3 6

1
2) On remarque: z = ) + TSi = —3zp etdonc:

arg (22016) = 2016 x arg(z) = 2016 x %” [27r] ='672\x 272[2%] = 0[271].

22016’ 2016 _ 1,

De plus |z| = 1 donc ‘ =|z

On en déduit : z°%1® = 1 x (cos(0) +isin(0)) = 1.

VIII. Applications des nombres complexes a la géométrie
B THEOREME
m Soient A et B deux points distincts d’affixes reE_eitives Z4 etzp.
AB = ||AB|| = |2B— 2|t arg(2p — z4) = (7,1@) 2.

m Soient A, B, C et D quatre points distincts d’affixes respectives z4, zp, z¢ et zp.

arg (M> = (1@) [27].

ZB —Zp

PREUVE

Soient A et B deux points distincts d’affixes respectives z4 et zp.

Il existe un unique point M d’affixe z tel que OM = AB. Les affixes de ces deux vecteurs
sont donc égales ce qui donne : z = zp — z4.

On en déduit que |z| = |zp — z4] eﬁg(z) = argzi— z4)[27].

Donc OM = AB = |zp — z] et (7, cﬁﬁ) = (7,1@) = arg(zp — z4)[271].

Soient A, B, C et D quatre points distincts d’affixes respectives z 4, zp, z¢c et zp.

Par les propriétés de I'argument on a :

Zp —z
arg ( b C) = arg(zp —zc) — arg(zp — za).
ZB —ZA

Ce qui donne par définition de ’argument :

g (275) < (7,08) - (7.38) = (38.7) + (7.) = (4h D)

ZB — ZA

la derniére égalité résultant de la relation de Chasles pour les angles de vecteurs.

2] = Qo & 1, & re(z) = are(zy) + 727 = —%[Zn]
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|Exercice d'application] Ensembles de points
Dans chacun des cas suivants, déterminer I'ensemble des points M d’affixe z satisfaisant la
condition :
° |Z +1-— i| = &
o |z—3|=|z+2+3i.
o arg(z—1—1i) = %[27‘[].
z—1+2i T
o arg (?) = E[n]

Correction

|z4+1—i|=3<=|z— (-1 +1i)| =3 <= AM =3 avec A point d’affixe z4 = —1 + i. Donc M appartient au cercle
de centre A (—1; 1) et de rayon 3.

|z—3|=|z+2+3i| <= |z—3|=|z— (-2 — 3i)| <= BM = CM avec B d’affixe zg = 3 et C d’affixe zc = =2 — 3i.
Donc M appartient a la médiatrice de [BC].

o arg(z—1—1i) = ;[
d’affixe zp = 1 + 1.

2] <= arg(z ~ (1+1)) = T27] = (7, EM) = 2 (2] ayec

Donc M appartient a la demi-droite d’origine E privé de E, de vecteur directeur i tel que

(%) =1
o arg (ﬂ) = g (7] <= (m, m) = g[ﬂ] avec F d’affixe zp,=1 — 2i et G d’affixe
Donc M appartient au cercle de diametre [FG]| privé des points F et G.

REMARQUES :

I) Trois points distincts sont alignés si et seulement si : (zﬁ, A—C)) =0 [71] ce qui équivauta:

Zc— 2 Zc—2
arg (u) =0[n] < c A est un réel non nul.
ZB — ZA ZB — ZA

2) Un triangle ABC est rectangle en A si et seulement si : (1@, A—C>> = g[n] ; Cest-a-dire :

Zc—z T Zc—z
arg (u) = = [n]etB# Aetd#A <= I 4 est un imaginaire pur non nul.
ZB — ZA 2 ZB — ZA

O00Dombresicomplexesiet.configurationsigéométriques

Exercice d’application

A, B, C trois points d‘affixes respectives : z4 = 2i,zp =2 +1i,zc =1 —1i.
Démontrer que le triangle ABC est isocele rectangle en B.

= |2afi| = /22 4+ (—1)2 = VB et BC = |z¢c —zp| = | —1—2i| = [1+2i| = V5

donc ABC isocele en B. D’autre part :

Correction

AB = IZB—ZA

24—z —2+i1 _ (=241i)(—1+2i)

Zc —ZB —1—21_ 144

Donc (B—}L Iz) = arg (%) =arg(i) = g [271] donc ABC est rectangle en B.
C — 4B

IX. Forme exponentielle

1. Ecriturelexponentielleldes.complexesidelmodulel1
M DEFINITION

Tout nombre complexe de module 1 et d’argument 6 peut s’écrire sous la forme :

cos(6) + isin(0) = €',
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Exemples

1) Placer sur le cercle trigonométrique les points M; d’affixes

iZ i3z 27
zl-telsque:zlzez;zQ:e ;23 = €2 ;z4 = <7, M,
27r M5 4
Z5 = e'
At L \
2) La forme algebnque des complexes précédents est : \
i 7T L. 7T q. \
z1 =€ 2 = Cos (5)4’1811’1(5) =1 M, \ My
z; = el *cos( )+1s1n 0 u

= COos +isin

7

1;
M,

‘*’|':\f” N|:1
SN—"

zy = el27 = cos(27T) +isin(2m)
Z5 = eiZTﬂ = COos ( > +isin (

2. Cas général

B DEFINITION

Tout complexe z # 0 s’écrit sous la forme z = re® avec r = |z| et § = arg(z)[271].

Cette écriture est appelée « forme exponentielle du complexe z ».
Réciproque : Siz € C* et z = re’® avec r > 0 alors r = |z| et § = arg(z)[27].
REMAROUE : Pour déterminer la forme exponentielle d"un complexe z, on reprend la

méthode 6 pour la détermination de r et de 6.

Exemples

|) Déterminons la forme exponentielle de z; = —2ietzy; =1 +1}

On peut déterminer le module et un argument par la méthode précédemment donnée mais

on peut aussi opérer de la maniére suivante :

z1=-21=2(-1+0i) =2 (cos <%n) +isin <%7T>> — 2e~i%

22:1+i:\/—(7+1\/_> \/E(cos(%>+isin(

2) Déterminons la forme algébrique/de z3 = 401

zz =14 <Cos (%”) +isin (%")) =4 (—% + §1> = —242iV3.

3. Calculs avec la notation exponentielle

B THEOREME
Pour tous nombres réels 01, 6, :
1) iy oif2 b oilBi6n) 3) L _ it _ gy
olf
q n 5 eigl 5
2) (elgl) =el" nez 4) = = l®1-0)
4 6192
REMARQUES :
# Ces propriétés sont admises. Elles résultent du fait que |e!?| = 1 et des propriétés des
arguments.

= La propriété 2) s’appelle formule de Moivre quand on l'écrit sous la forme
(cos® +1isinf)" = cos(nd) +isin(nb),n € Z
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Utilisation de la forme exponentielle

Exercice d’application

. . iz 2z
1) Mettre sous forme exponentielle : z; = —VB+i, zp=e ‘gz% , 23 = .171
e e
2) Déterminer les entiers 7 tels que (—z;)" est un nombre réel.
. 141
3) Soit Z = ————= un complexe.

V6 +iv2

a) Déterminer la forme exponentielle du complexe Z.

b) Déterminer la forme algébrique du complexe Z. En déduire les valeurs exactes de

cos(n>etsm(n)
12 12

Correction
1) En employant la méthode 6 on trouve |z1| = 2 puis arg(z;) = 567-[ [271]. Donc z; = 2el 7.
Y4 57\ 2 Y4 x57 : T
On en déduit:zp =e™'e X (Ze‘%) — de 1% x ¥FF = 4ielF = 46 F = _4i
15_/7
etzy = 22200 _ Lai(F+E) = Sen = 2
5e-iF 5 5 ~ 5

2) 21 = 2e71% etdonc (—z;)" = (Zel%) = 2"elTe"

(—z1)" est réel <— o 0[] <= il existe k € Z tel que —— = krr <={n = =6k

Donc (—z7)" est réel si et seulement si 7 est un multiple de 6.
3)a) Ona: 1+1—\/_e4et\/_—|—1\/_ 2v/2¢'% donc

= ! +'l V2e'd 4,7 = 1ei(%fg) = lei% est la forme exponentielle de Z.
V6+iv2  2v2eF 2 2

b) Z = est la forme algébrique de Z.

(1+Dh@—h@):v%+¢§+ﬁ@—vﬁ
8 8 8
OnadonC'lei%—\/_Jr\/_ V6 - \/_
2
. vr vr Vo2
Dou:%(ws(u)ﬂsm(ﬁ)) AN

On en déduit : cos(lrg) \/_1_\/_ sm(u) = @

REMARQUE :

La notation exponentielle permet desretrouver les formules d’addition pour le cosinus et le sinus.

4. LA LINEARISATION

a-Formules et applications

THEOREME : Formules de Moivre

Vn € Z, VOc R, | e = (ew)n c’est a dire | cos(nd) + isin(nb) = (cosf + isin )"

APPLICATION : Pour exprimer cosnf ou sinnf en fonction de cosf et de sin@.

1. 'On remarque que cosnf = Re[(cosf + isin0)"] et que sinnf = Im[(cos O + isin 0)"]
2. Puis on utilise la formule du bind6me pour développer (cos @ + isin 0)™

3. On en extrait alors la partie réelle et la partie imaginaire pour obtenir cosnf et sinnf.

THEOREME! ;I Formules!d’Euler it 1 o—if oif —if

Soitlflunlréellquelconque.lAlorsl: cosf = — et |sinf = _22_6

Remarque . Ces formules permettent de linéariser (transformer des produits en sommes) des expressions trigo-

nométriques. Cette transformation est particulierement utile lors du calcul d’intégrales.
b-LINEARILISATION : Pour linéariser un produit de sinus et de cosinus :

1. Onremplace les cos(a.0) et les sin(b.0) a ’aide des formules d’Euler.

2. On développe I'expression obtenue a ’aide de la formule du bindme.
3. On regroupe les termes conjugués entre eux.
4

. On réutilise les formules d’Euler pour retrouver des cosinus et des sinus.
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5.Nombres complexes et transformations

a-Ecriture complexe d’une translation

/

. I
Theoréme :
W est un vecteur d’affixe b.

L’écriture complexe de la translation de vecteur w, qui transforme M (2) en M'(Z") est
/
z =z+b.

M(2')

t (M) = M’
. _/
b-Ecriture complexe de I'homothétie
(" Theoréme : D
Q est un point d’affixe w et k un réel non nul. L’écriture complexe de I’homothétie de
centre () et de rapport k, qui transforme M(z) en M'(2') est 2/ —w = k(2= w).
M (') M(2) M(2)
M(z M'(2)
@ __, @ QML= kO M' (2
QM = k.QM -
k>0 0<k<1 k<0
\_ )

h est 'homothétie de centre Q et de rapport k; M’ = h(M) equlvaut a QM’ — KQM.

On note z et 2 les affixes respéctives de M et M’, I'affixe de QM' est 2/ — w, celle de kQM est
k(z —w). Donc M’ = h(M) équivaut a 2’ —w:k(z—w).

c-Ecriture complexe d’une rotation

. I
Theoréeme @
Oest un point d’affixe’ w et 6 un réel. L’écriture complexe de la rotation de centre {2 et
d’angle de mesure , qui transforme M(z) en M'(2') est 2/ —w = € (z — w).
M'(2)
M(z)
0
9 = (001 QM)

\—

_/

—
R est la rotation de centre et d’angle de mesure § ; M’ = R(M) equivaut a (W QM )=0et QM’
On note z et 2’ les affixes respectives de M et M’ l’afﬁxe de QM’ est 2 — w, celle de QM est(z — w).

Donc M’ = R(M) équivaut a 2/ — w = %

= QM.

z—w).

12/12


PC
Rectangle 




