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On considère la fonction f définie par f x
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Déter er D

Monter que f admet un imum

monter que la fonction f est la composée de deux fonctions classiques puis etudier les iations de f
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5EXERCICE

On consdère les fonctions 𝒇 𝒆𝒕 𝒈 définies par : 𝒇 (𝒙) = 
√𝒙−𝟏

𝒙
 𝒆𝒕 𝒈(𝒙) =  𝟏 + 𝒙2  

1) Calculer 𝒇(𝒈 (𝒙))  

2) Montrer que (∀𝒙 ∈ [𝟏, +∞[) 
1 2
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2

f x
x

  

3) En déduire la monotonie de la fonction h définie par 𝒉 (𝒙) =
|𝒙|

𝟏+ 𝒙𝟐

6EXERCICE

On considère la fonction f définie par : 𝒇 (𝒙) =  
𝒙𝟐+𝟑𝒙+𝟏

𝒙+𝟏

1) Montrer que ∀𝒙 ∈ ] − 𝟏, + ∞[   𝒇 (𝒙) = 𝒖(𝒙 + 𝟏)𝒐ù 𝒖 𝒆𝒔𝒕 une fonction que l’on déterminera. 

2) En déduire la monotonie de f sur ]-1, + ∞[

3) Montrer que f n’admet pas de minimum. 

7EXERCICE

On considère la fonction f définie par    𝒇 (𝒙) 
𝒙𝟑+ 𝒙𝟐+ 𝟐𝒙+𝟑

 𝒙𝟐+ 𝒙+𝟑 

1) Montrer que (∀𝒙 ∈ 𝑰𝑹)    𝒇 (𝒙)  > 𝒙 − 𝟏

2) En déduire que f n’est pas majorée. 
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8EXERCICE

On considère la fonction f définie par :𝒇 (𝒙) 
𝒙𝟐+ 𝒙+  𝟏

 𝟐𝒙−𝟏 

Montrer que f n’est pas majoré.(Utiliser un raisonnement par l’absurde). 
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On considère la fonction f définie par f x x
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Deter er D et montrer que f est une fonctin impaire

Etudier les itions des foctions f et g
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EXERCICE 13 

On considère la fonction f définie par 𝑓 (𝑥) = √2 𝑥 −  𝐄(√2 𝑥) 

1) Montrer que f est périodique de période 
1

√2

a) On considère g la restriction de f sur
:

( ) 2      ( 2 )

g

x g x x E x


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b) Montrer que g est injective.

c) On considère l’équation 𝑔 (𝑥) = 1 𝑎𝑣𝑒𝑐 𝑥 ∈
 Montrer que 0 n’est pas solution de l’équation.

 Est-ce que l’équation admet des solutions dans ? 

Est-ce que g est surjective ? Justifier 


